www . a 2 zpapers. com
2316
220

Class -BA/B.Sc. III Sem VI

Subject - Mathematics Paper-I (Dynamics)

Maximum Marks : 50

Time Allowed: 3 Hours

Note: Attemp any five questions selecting atleast two from eat section.

Section-A

1. (a) A bus is begning to move with an acceleration of $1 \mathrm{~m} / \mathrm{sec}^{2}$. A man who is 40 m behind the bus starts running at $5 \mathrm{~m} / \mathrm{sec}$ to catch the bus. After how many seconds vill the man be able to catch the bus?
(b) Two scale pans each of mass 1 kg are connected by a light string passing over a pilley. Show how to divide a mass of 10 kg in twa Scele pans so as to produce an acceleration of $\mathrm{g} / 9$.
2. (a) A body is projected up a smooth inclined piane of length 20 m and inclination 30° with a velocitygist sufficient for it to reach the top. Divide the mole length into three parts, so that each part is covered in the same time.
(b) Two smooth inclined planes of inclination 30° and 60° respectively are placed back to back and a string, passing over a smooth pulley at the top, joins masses of 0.3 kg and 0.5 kg lying on the planes. Find the acceleration of either mass, the tension in the string and the reactions of the planes.

www . a2 zpapers. com

3. (a) A particle moves in a straight line, starting from rest from a distance c to a centre of attraction towards which force per unit mass is $\frac{\mu}{x^{3}}$, where x is measured from the centre. Show that the time required to reach the centre is $\frac{\mathrm{c}^{2}}{\sqrt{u}}$.
(b) A partive moving with S.H.M. of period 30 sec travels tion from the position of rest in 5 sec . Find the amolitude, maximum velocity and velocity at the end of 5 seconds.
4. (a) A particle is projected upwards with a velocity of $4 \mathrm{~m} / \mathrm{sec}$ and after t sconds another particle is projected upwards fronthe same point and with the same velocity. Prove tha 14 e particles meet at height $\frac{4 u^{2}-g^{2} t^{2}}{8 g}$ metres after atine $\left(\frac{t}{2}+\frac{u}{g}\right)$
seconds.
(b) A particle is executing S.H.M. A and B are the points at which its velocity is zero. It passes through a certain point P at intervais of 0.5 and 1.5 seconds with a speeud of $3 \mathrm{~m} / \mathrm{sec}$. Determine the Maximum speed and also the ratio $\frac{A P}{P B} \cdot(5,5)$

www.a2zpapers.com

Section-B

5. (a) An elastic string of natural length/is extended by an amount a , when it supports a mass M at rest, gand is extended by an amount b when it is rotating as conical pendulum, carrying a particle of the same nass, with angular velocity w, prove that $\mathrm{gb}=\operatorname{dr} 2(\mathrm{z}(1+\mathrm{b})$
(b) Define cgnical pendulum. Show that the time of revolution varias directly as the square root of the depth of the particlelow the fixed point.
6. (a) A gun is fired from thearealel. It is then taken to a height h metre abovetbe sea level and fired making the same angle α watn the horizon. Show that its range is increased by the fraction
$\frac{1}{2}\left[\left(1+\frac{2 g h}{u^{2} \sin ^{2} \alpha}\right)^{1 / 2}-1\right]$ of itself, u being the
veiocity of projection.
(b) A pendulum which beats seconds at the surfabe of the earth is carried to the top of a mountain 5 km high, how many seconds will it loss or gain per day? What correction in its present length be made so that it may beat seconds at the top of the mountain?
7. (a) Two bodies aro projected from the same point in directions making angles α_{1} and α_{2} with the horizontal and strike at the same point on the

www. a 2 zpapers. com

horizontal plane through the point of projection. If
t_{1} and t_{2} be their time of flight, show that

$$
\frac{t_{1}^{2}-t_{2}^{2}}{t_{1}^{2}+t_{2}^{2}}=\frac{\operatorname{Sin}\left(\alpha_{1}-\alpha_{2}\right)}{\operatorname{Sin}\left(\alpha_{1}+\alpha_{2}\right)}
$$

If α be the angle between the tangents at the catremities of any arc of a parabolic path and v, v_{1} the velocities at these extremities and u be their horizenilal component, show that the time of describingthe arc is $\frac{\mathrm{vv}_{1} \operatorname{Sin} \alpha}{\mathrm{gu}}$.
8. (a) A particle is profected up an inclined plane of inclination β at an elevation α to the horizon. Show that $\tan \alpha=\cot \beta \not 2 \tan \beta$, if the particle strikes the plane at rig't angles.
(b) A particle is projected with veccity $2 \sqrt{\mathrm{ag}}$ so that it just clears two walls of equal beights 'a' which are at a distance 2 a from each othen Show that the latus rectum of the path is $2 a$ and that the time of passing between the walls is $2 \sqrt{a / g}$

